Probabilistic latent variable models for distinguishing between cause and effect

نویسندگان

  • Joris M. Mooij
  • Oliver Stegle
  • Dominik Janzing
  • Kun Zhang
  • Bernhard Schölkopf
چکیده

We propose a novel method for inferring whether X causes Y or vice versa from joint observations of X and Y . The basic idea is to model the observed data using probabilistic latent variable models, which incorporate the effects of unobserved noise. To this end, we consider the hypothetical effect variable to be a function of the hypothetical cause variable and an independent noise term (not necessarily additive). An important novel aspect of our work is that we do not restrict the model class, but instead put general non-parametric priors on this function and on the distribution of the cause. The causal direction can then be inferred by using standard Bayesian model selection. We evaluate our approach on synthetic data and real-world data and report encouraging results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinguishing Between Latent Classes and Continuous Factors: Resolution by Maximum Likelihood?

Latent variable models exist with continuous, categorical, or both types of latent variables. The role of latent variables is to account for systematic patterns in the observed responses. This article has two goals: (a) to establish whether, based on observed responses, it can be decided that an underlying latent variable is continuous or categorical, and (b) to quantify the effect of sample si...

متن کامل

Function Optimization with Latent Variable Models

Most of estimation of distribution algorithms (EDAs) try to represent explicitly the relationship between variables with factorization techniques or with graphical models such as Bayesian networks. In this paper, we propose to use latent variable models such as Helmholtz machine and probabilistic principal component analysis for capturing the probabilistic distribution of given data. The latent...

متن کامل

Using multivariate generalized linear latent variable models to measure the difference in event count for stranded marine animals

BACKGROUND AND OBJECTIVES: The classification of marine animals as protected species makes data and information on them to be very important. Therefore, this led to the need to retrieve and understand the data on the event counts for stranded marine animals based on location emergence, number of individuals, behavior, and threats to their presence. Whales are g...

متن کامل

Noisy-OR Component Analysis and its Application to Link Analysis

We develop a new component analysis framework, the Noisy-Or Component Analyzer (NOCA), that targets high-dimensional binary data. NOCA is a probabilistic latent variable model that assumes the expression of observed high-dimensional binary data is driven by a small number of hidden binary sources combined via noisy-or units. The component analysis procedure is equivalent to learning of NOCA par...

متن کامل

Determinants of Inflation in Selected Countries

This paper focuses on developing models to study influential factors on the inflation rate for a panel of available countries in the World Bank data base during 2008-2012‎. ‎For this purpose‎, Random effect log-linear and Ordinal logistic models are used for the analysis of continuous and categorical inflation rate variables‎. ‎As the original inflation rate response to variables shows an appar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010